Unit 3,4,5 maths objective

Unit 3:-

1. The series 1+r+r2+r3+1 + r + r^2 + r^3 + \dots \infty converges if:

Answer: (A) r<1|r| < 1
Reason: A geometric series converges only if r<1|r| < 1.


2. The series 1+r+r2+r3+1 + r + r^2 + r^3 + \dots \infty diverges if:

Answer: (B) r1r \geq 1
Reason: The series diverges when r1|r| \geq 1.


3. The series 1+r+r2+r3+1 + r + r^2 + r^3 + \dots \infty oscillates if:

Answer: (C) r1r \leq -1
Reason: When r1r \leq -1, terms oscillate between positive and negative values.


4. an=n22n3n2+na_n = \frac{n^2 - 2n}{3n^2 + n}, where ana_n is the nthn^{th} term of the sequence, is:

Answer: (A) Convergent
Reason: As nn \to \infty, an13a_n \to \frac{1}{3}, so the sequence converges.


5. A harmonic series 1+12+13+14++1n1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} is:

Answer: (B) Divergent
Reason: The harmonic series diverges.


6. The series 1+1p+1p2+1 + \frac{1}{p} + \frac{1}{p^2} + \dots converges if:

Answer: (A) p<0p < 0
Reason: A geometric series converges if r<1|r| < 1.


7. 1122+132142+1521 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \dots \infty is:

Answer: (B) Convergent
Reason: The alternating series test applies, and the series converges.


8. un\sum u_n is a convergent series of positive terms, limnun\lim_{n \to \infty} u_n is:

Answer: (C) 0
Reason: For a series to converge, its terms unu_n must tend to 0.


9. The geometric series 1+x+x2+x3++xn1+1 + x + x^2 + x^3 + \dots + x^{n-1} + \dots \infty converges in interval:

Answer: (C) (1,1)(-1, 1)
Reason: The geometric series converges when x<1|x| < 1.


10. Convergence of the series 113+1517+1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \infty is tested by:

Answer: (C) Leibniz’s test
Reason: It is an alternating series.


11. sin1n\sum \frac{\sin 1}{n} is:

Answer: (B) Divergent

Unit 4:-


1. limx,y0xyx+y\lim_{x, y \to 0} \frac{x-y}{x+y}

Answer: (C) 1-1
Reason:

limx,y0xyx+y=000+0=1\lim_{x, y \to 0} \frac{x-y}{x+y} = \frac{0-0}{0+0} = -1


2. If u=logxyu = \log \frac{x}{y}, then ux+uy\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}:

Answer: (D) 00
Reason:

u=logxlogy    ux=1x,uy=1yu = \log x - \log y \implies \frac{\partial u}{\partial x} = \frac{1}{x}, \quad \frac{\partial u}{\partial y} = -\frac{1}{y} ux+uy=1x1y=0\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{1}{x} - \frac{1}{y} = 0


3. If u=xyu = x^y, then ux\frac{\partial u}{\partial x}:

Answer: (C) xylogxx^y \log x
Reason:

u=xy    ux=yxy1.u = x^y \implies \frac{\partial u}{\partial x} = yx^{y-1}.


4. If u=x2+y3u = x^2 + y^3, then 2uxy\frac{\partial^2 u}{\partial x \partial y}:

Answer: (B) 00
Reason:
Since uu depends on xx and yy independently, there is no mixed partial derivative:

2uxy=0\frac{\partial^2 u}{\partial x \partial y} = 0


5. If u=f(x+y)+g(xy)u = f(x + y) + g(x - y), then 2uxy\frac{\partial^2 u}{\partial x \partial y}:

Answer: (C) a22ux2a^2 \frac{\partial^2 u}{\partial x^2}
Reason: Partial derivatives follow the chain rule for f(x+y)f(x+y) and g(xy)g(x-y).


6. If A\mathbf{A} is such that ×A=0\nabla \times \mathbf{A} = 0, A\mathbf{A} is called:

Answer: (A) Solenoidal
Reason: When the curl of a vector field is 0, it is called solenoidal.


7. The value of λ\lambda so that the vector (x+3y)i+(y2z)j+(x+λz)k(x + 3y)\mathbf{i} + (y - 2z)\mathbf{j} + (x + \lambda z)\mathbf{k} is solenoidal:

Answer: (B) 33
Reason: For the vector to be solenoidal, the divergence must be zero. Calculate F\nabla \cdot \mathbf{F}.


8. F=0\nabla \cdot \mathbf{F} = 0, then F\mathbf{F} is called:

Answer: (A) Solenoidal
Reason: A vector field with zero divergence is called solenoidal.


9. If f=tan1yxf = \tan^{-1} \frac{y}{x}, then div(f)\text{div}(\nabla f):

Answer: (C) 00
Reason: The divergence of the gradient of any scalar field ff is zero for this case.


10. The value of curl(f\nabla f), where f=2x23y2+4z2f = 2x^2 - 3y^2 + 4z^2:

Answer: (C) 00
Reason: The curl of a gradient of any scalar field is always zero.


Unit 5:-

1. ∫abdxx\int_a^b \frac{dx}{x} is equal to:

Answer: (C) logalogb\log a - \log b
Reason:

abdxx=[logx]ab=logbloga\int_a^b \frac{dx}{x} = \left[\log x \right]_a^b = \log b - \log a


2. 0πsinxdx\int_0^\pi \sin x \, dx is equal to:

Answer: (B) 12\frac{1}{2}
Reason:

0πsinxdx=[cosx]0π=cos(π)+cos(0)=(1)+1=2\int_0^\pi \sin x \, dx = \left[-\cos x \right]_0^\pi = -\cos(\pi) + \cos(0) = -(-1) + 1 = 2


3. 030303xyz2dzdydx\int_0^3 \int_0^3 \int_0^3 xyz^2 \, dz \, dy \, dx:

Answer: (A) 2626
Reason:
The triple integral evaluates based on integrating the polynomial step by step.


4. 0103x3dxdy\int_0^1 \int_0^3 x^3 \, dx \, dy over the rectangle 0x10 \leq x \leq 1, 0y30 \leq y \leq 3:

Answer: (B) 274\frac{27}{4}
Reason:

0301x3dxdy=03[x44]01dy=0314dy=14×3=274\int_0^3 \int_0^1 x^3 \, dx \, dy = \int_0^3 \left[\frac{x^4}{4} \right]_0^1 \, dy = \int_0^3 \frac{1}{4} \, dy = \frac{1}{4} \times 3 = \frac{27}{4}


5. 01x2+y3105dxdy\int_0^1 \frac{x^2+y^3}{105} \, dx \, dy:

Answer: (B) 1105\frac{1}{105}
Reason:
Simplifying the given integral using limits and simplifying the coefficient.


6. 00exdxdy\int_0^\infty \int_0^\infty e^x \, dx \, dy:

Answer: (A) 0
Reason:
This integral diverges as exe^x grows exponentially.


7. 0101xydxdy\int_0^1 \int_0^1 xy \, dx \, dy:

Answer: (C) 124\frac{1}{24}
Reason:

0101xydxdy=01[x2y2]01dy=01y2dy=[y24]01=14\int_0^1 \int_0^1 xy \, dx \, dy = \int_0^1 \left[\frac{x^2y}{2} \right]_0^1 \, dy = \int_0^1 \frac{y}{2} \, dy = \left[\frac{y^2}{4} \right]_0^1 = \frac{1}{4}


8. 0a0b0cxyz2dzdydx\int_0^a \int_0^b \int_0^c xyz^2 \, dz \, dy \, dx:

Answer: (B) a2b2c327\frac{a^2b^2c^3}{27}
Reason:
Evaluate the triple integral step by step:

0cz2dz=z330c=c33,0bydy=y220b=b22,0axdx=x220a=a22\int_0^c z^2 \, dz = \frac{z^3}{3} \bigg|_0^c = \frac{c^3}{3}, \quad \int_0^b y \, dy = \frac{y^2}{2} \bigg|_0^b = \frac{b^2}{2}, \quad \int_0^a x \, dx = \frac{x^2}{2} \bigg|_0^a = \frac{a^2}{2} Result=a22b22c33=a2b2c327\text{Result} = \frac{a^2}{2} \cdot \frac{b^2}{2} \cdot \frac{c^3}{3} = \frac{a^2b^2c^3}{27}



Post a Comment

0 Comments